SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice.

نویسندگان

  • Miguel E Vega-Sánchez
  • Lirong Zeng
  • Songbiao Chen
  • Hei Leung
  • Guo-Liang Wang
چکیده

The rice (Oryza sativa) E3 ligase SPOTTED LEAF11 (SPL11) negatively regulates programmed cell death and disease resistance. We demonstrate here that SPL11 also regulates flowering via interaction with SPIN1 (for SPL11-interacting protein1), a Signal Transduction and Activation of RNA family member. SPIN1 binds RNA and DNA in vitro and interacts with SPL11 in the nucleus. Spl11 mutants have delayed flowering under long-day conditions. Spin1 overexpression causes late flowering independently of daylength; expression analyses of flowering marker genes in these lines suggested that SPIN1 represses flowering by downregulating the flowering promoter gene Heading date3a (Hd3a) via Hd1-dependent mechanisms in short days and by targeting Hd1-independent factors in long days. Both Spin1 and Spl11 are regulated diurnally in opposing phases. SPL11 negatively regulates Spin1 transcript levels, while SPIN1 also affects Spl11 expression. Moreover, we show that coincidence of high accumulation of Spin1 mRNA with the light in the morning and early evening is needed to repress flowering. SPIN1 is monoubiquitinated by SPL11, suggesting that it is not targeted for degradation. Our data are consistent with a model in which SPIN1 acts as a negative regulator of flowering that itself is negatively regulated by SPL11, possibly via ubiquitination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RBS1, an RNA Binding Protein, Interacts with SPIN1 and Is Involved in Flowering Time Control in Rice

The rice U-box/ARM E3 ubiquitin ligase SPL11 negatively regulates programmed cell death (PCD) and disease resistance, and controls flowering time through interacting with the novel RNA/DNA binding KH domain protein SPIN1. Overexpression of Spin1 causes late flowering in transgenic rice under short-day (SD) and long-day (LD) conditions. In this study, we characterized the function of the RNA-bin...

متن کامل

Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity.

The rice (Oryza sativa) spotted leaf11 (spl11) mutant was identified from an ethyl methanesulfonate-mutagenized indica cultivar IR68 population and was previously shown to display a spontaneous cell death phenotype and enhanced resistance to rice fungal and bacterial pathogens. Here, we have isolated Spl11 via a map-based cloning strategy. The isolation of the Spl11 gene was facilitated by the ...

متن کامل

The RhoGAP SPIN6 Associates with SPL11 and OsRac1 and Negatively Regulates Programmed Cell Death and Innate Immunity in Rice

The ubiquitin proteasome system in plants plays important roles in plant-microbe interactions and in immune responses to pathogens. We previously demonstrated that the rice U-box E3 ligase SPL11 and its Arabidopsis ortholog PUB13 negatively regulate programmed cell death (PCD) and defense response. However, the components involved in the SPL11/PUB13-mediated PCD and immune signaling pathway rem...

متن کامل

Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins

OBJECTIVES Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown. METH...

متن کامل

Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins.

Ubiquitin ligases play a central role in determining the specificity of the ubiquitination system by selecting a myriad of appropriate candidate proteins for modification. The U-box is a recently identified, ubiquitin ligase activity-related protein domain that shows greater presence in plants than in other organisms. In this study, we identified 77 putative U-box proteins from the rice genome ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 2008